Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Comput Intell Neurosci ; 2022: 2564022, 2022.
Article in English | MEDLINE | ID: covidwho-1677408

ABSTRACT

Rapid diagnosis of COVID-19 with high reliability is essential in the early stages. To this end, recent research often uses medical imaging combined with machine vision methods to diagnose COVID-19. However, the scarcity of medical images and the inherent differences in existing datasets that arise from different medical imaging tools, methods, and specialists may affect the generalization of machine learning-based methods. Also, most of these methods are trained and tested on the same dataset, reducing the generalizability and causing low reliability of the obtained model in real-world applications. This paper introduces an adversarial deep domain adaptation-based approach for diagnosing COVID-19 from lung CT scan images, termed ADA-COVID. Domain adaptation-based training process receives multiple datasets with different input domains to generate domain-invariant representations for medical images. Also, due to the excessive structural similarity of medical images compared to other image data in machine vision tasks, we use the triplet loss function to generate similar representations for samples of the same class (infected cases). The performance of ADA-COVID is evaluated and compared with other state-of-the-art COVID-19 diagnosis algorithms. The obtained results indicate that ADA-COVID achieves classification improvements of at least 3%, 20%, 20%, and 11% in accuracy, precision, recall, and F1 score, respectively, compared to the best results of competitors, even without directly training on the same data. The implementation source code of the ADA-COVID is publicly available at https://github.com/MehradAria/ADA-COVID.


Subject(s)
COVID-19 , COVID-19 Testing , Humans , Lung , Reproducibility of Results , SARS-CoV-2 , Tomography, X-Ray Computed
2.
Biomed Res Int ; 2021: 9942873, 2021.
Article in English | MEDLINE | ID: covidwho-1376539

ABSTRACT

PURPOSE: Due to the excessive use of raw materials in diagnostic tools and equipment during the COVID-19 pandemic, there is a dire need for cheaper and more effective methods in the healthcare system. With the development of artificial intelligence (AI) methods in medical sciences as low-cost and safer diagnostic methods, researchers have turned their attention to the use of imaging tools with AI that have fewer complications for patients and reduce the consumption of healthcare resources. Despite its limitations, X-ray is suggested as the first-line diagnostic modality for detecting and screening COVID-19 cases. METHOD: This systematic review assessed the current state of AI applications and the performance of algorithms in X-ray image analysis. The search strategy yielded 322 results from four databases and google scholar, 60 of which met the inclusion criteria. The performance statistics included the area under the receiver operating characteristics (AUC) curve, accuracy, sensitivity, and specificity. RESULT: The average sensitivity and specificity of CXR equipped with AI algorithms for COVID-19 diagnosis were >96% (83%-100%) and 92% (80%-100%), respectively. For common X-ray methods in COVID-19 detection, these values were 0.56 (95% CI 0.51-0.60) and 0.60 (95% CI 0.54-0.65), respectively. AI has substantially improved the diagnostic performance of X-rays in COVID-19. CONCLUSION: X-rays equipped with AI can serve as a tool to screen the cases requiring CT scans. The use of this tool does not waste time or impose extra costs, has minimal complications, and can thus decrease or remove unnecessary CT slices and other healthcare resources.


Subject(s)
Artificial Intelligence , COVID-19/diagnosis , COVID-19/virology , SARS-CoV-2/isolation & purification , Tomography, X-Ray Computed/methods , Algorithms , COVID-19/diagnostic imaging , COVID-19 Testing/methods , Humans , ROC Curve
3.
J Med Internet Res ; 23(4): e27468, 2021 04 26.
Article in English | MEDLINE | ID: covidwho-1219288

ABSTRACT

BACKGROUND: Owing to the COVID-19 pandemic and the imminent collapse of health care systems following the exhaustion of financial, hospital, and medicinal resources, the World Health Organization changed the alert level of the COVID-19 pandemic from high to very high. Meanwhile, more cost-effective and precise COVID-19 detection methods are being preferred worldwide. OBJECTIVE: Machine vision-based COVID-19 detection methods, especially deep learning as a diagnostic method in the early stages of the pandemic, have been assigned great importance during the pandemic. This study aimed to design a highly efficient computer-aided detection (CAD) system for COVID-19 by using a neural search architecture network (NASNet)-based algorithm. METHODS: NASNet, a state-of-the-art pretrained convolutional neural network for image feature extraction, was adopted to identify patients with COVID-19 in their early stages of the disease. A local data set, comprising 10,153 computed tomography scans of 190 patients with and 59 without COVID-19 was used. RESULTS: After fitting on the training data set, hyperparameter tuning, and topological alterations of the classifier block, the proposed NASNet-based model was evaluated on the test data set and yielded remarkable results. The proposed model's performance achieved a detection sensitivity, specificity, and accuracy of 0.999, 0.986, and 0.996, respectively. CONCLUSIONS: The proposed model achieved acceptable results in the categorization of 2 data classes. Therefore, a CAD system was designed on the basis of this model for COVID-19 detection using multiple lung computed tomography scans. The system differentiated all COVID-19 cases from non-COVID-19 ones without any error in the application phase. Overall, the proposed deep learning-based CAD system can greatly help radiologists detect COVID-19 in its early stages. During the COVID-19 pandemic, the use of a CAD system as a screening tool would accelerate disease detection and prevent the loss of health care resources.


Subject(s)
COVID-19/diagnostic imaging , COVID-19/virology , Deep Learning , Diagnosis, Computer-Assisted , Lung/diagnostic imaging , Lung/virology , SARS-CoV-2/isolation & purification , Datasets as Topic , Early Diagnosis , Humans , Pandemics , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL